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Abstract
The knotting probability is defined by the probability with which anN -step self-
avoiding polygon (SAP) with a fixed type of knot appears in the configuration
space. We evaluate these probabilities for some knot types on a simple cubic
lattice. For the trivial knot, we find that the knotting probability decays much
slower for the SAP on the cubic lattice than for continuum models of the SAP
as a function of N . In particular the characteristic length of the trivial knot
that corresponds to a ‘half-life’ of the knotting probability is estimated to be
2.5 × 105 on the cubic lattice.

PACS numbers: 05.50.+q, 02.10.Kn

1. Introduction

The self-avoiding polygon (SAP) with fixed topology gives a simplified model of real ring
polymers in solution that have a topological constraint as well as excluded volume. Throughout
the time evolution, a circular polymer keeps the same knot which is given to it when it is made;
it does not change its topology under any thermal fluctuations since no crossing through itself is
allowed. On the other hand, the SAP corresponds to the special case of the self-avoiding walk
(SAW) that returns to the origin. If we construct a set of SAPs, then their topological states
may contain several different knots. Therefore, it is not trivial how to realize the topological
constraint on a SAP. One possible method for assigning the topological constraint on a SAP
is that after generating a large number of SAPs we select only such SAPs that have the same
given knot. By this method, we can assign the topological constraint on any SAP model. In
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this context, the probability that a given SAP has a fixed knot plays a central role, and we call
it the knotting probability of the SAP model for the knot. Among many different models, the
SAP on the cubic lattice with fixed topology is one of the most fundamental SAP models. It
has an advantage that the definition is very simple. We expect that the model should be suitable
for general and mathematical study. In fact, several rigorous results on knotting probability
have been derived for the SAP on the cubic lattice [1–4]. Thus, the main motivation behind
the present research is to characterize the knotting probability of the SAP on the cubic lattice
through numerical simulations.

Let us discuss some previous numerical results on SAP knotting probabilities [5–16]. For
a SAP model (or random polygon) with N steps, we denote by PK(N) the knotting probability
of the model for knot K . For the Gaussian model of random polygon and the rod–bead SAP
model, knotting probabilities were evaluated through numerical simulations for the trivial knot
K = ∅ [6, 8, 10] and also for some non-trivial knots [5, 12–15]. It was found that for the SAP
and random polygon models, the knotting probability as a function of the step number N is
given by the following:

PK(N) = C(K)Nm(K) exp[−N/N(K)] (1.1)

where C(K), m(K) and N(K) are fitting parameters. For large N , the formula (1.1) is
consistent with the asymptotic expansion of the partition function of the SAP with fixed-knot
type. For finite N , although it is not rigorous, it seems that the formula (1.1) fits numerical
data well. From the numerical result it was conjectured that the parameter N(K), which we
call the characteristic length of knot K , should be given by the same value for any knot K [12].
Furthermore, it was also conjectured that the parameter m(K), which we call the exponent of
knot K , should be universal for different SAP or random polygon models [13–15]. We note
that the fitting formula (1.1) together with the two conjectures are consistent with the standard
asymptotic behaviour expected for the SAP or random polygon. Here we also note that the
rod–bead model is an off-lattice SAP model.

Recently, the SAP on the cubic lattice with a fixed knot was studied through a numerical
simulation using the BFACF algorithm, which generates SAPs with the same fixed knot but
different step numbers N [16]. In the simulation, the exponent m(K) and the growth constant
for the number of allowed configurations of the SAP with knot K has been estimated for
some knots. Furthermore, it was shown that the knotting probability for the trivial knot
decays ‘exponentially’ for a face-centred cubic (FCC) lattice [11] and for the cubic lattice [3].
However, any precise estimate of the knotting probability or the characteristic length N(K)

has not been given for the cubic lattice. Thus, it is the primary purpose of this paper to evaluate
the characteristic length N(K) for the SAP on the cubic lattice.

In 1962, Delbrück [17] noticed that the topological constraint may be very important for
polymers in biology and chemistry. Since then, the topological problem has been studied in
several approaches in physics and mathematics. As one of the earliest studies, des Cloizeaux
and Mehta [18] estimated through numerical simulations the critical exponent ν for the internal
distance of the Gaussian random polygon and discussed some possible properties of random
polygons under the topological constraint.

After the rediscovery of the pivot algorithm, many SAW and SAP properties have been
investigated not only in field theory but also by computer simulations [20, 21]. It seems,
however, that there are only a few works such as [16, 19] where the gyration radius 〈R2

G〉SAP

of the SAP on the cubic lattice is studied by numerical simulations. Let us denote by 〈R2
G〉SAW

and 〈R2
G〉SAP the mean square of the gyration radius of the SAW and SAP, respectively. It is

interesting to evaluate the universal amplitude ratio between 〈R2
G〉SAP and 〈R2

G〉SAW. The ratio
has been evaluated only up to O(ε) in the ε-expansion method [22]. Furthermore, according
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to the scaling theory of polymers, the exponent νSAP for 〈R2
G〉SAP should be given by the

exponent νSAW for 〈R2
G〉SAW. The agreement is confirmed up to O(ε) by renormalization

group theory [22, 23]. However, it is nontrivial to confirm the agreement for the SAP on the
cubic lattice through numerical simulations. Thus, the numerical study of the gyration radius
for the SAP on the cubic lattice is another purpose of this research.

Hereafter in this introduction, we explain some of the main results of our numerical
simulations. Employing the pivot algorithm, we construct a large number of SAPs for the
SAP on the cubic lattice with given step number N . For the gyration radius, we have obtained
the exponent νSAP = 0.5867 ± 0.0017. This is indeed in good agreement with the estimate
of the critical exponent of the SAW in the ε-expansion νSAW = 0.5882 ± 0.0011. Thus, our
simulation in this paper also confirms the agreement of the two exponents.

Let us explicitly consider the method for the topological constraint on the SAP in the
cubic lattice with given step number N . The pivot algorithm of the SAP can generate all the
allowed configurations of the SAP with equal probability. Therefore, the set of SAPs generated
by the algorithm may contain various knots. Suppose that we have constructed M SAPs of
step number N . Calculating some knot invariants for each of the SAPs, we effectively detect
the knot types of the SAPs. We enumerate the number of such SAPs that have the same set
of values of the knot invariants for knot K , and denote it by M(K). The expectation value
of a physical quantity under the topological constraint with fixed knot K can be effectively
calculated by taking the statistical average of the quantity for the M(K) SAPs.

We now turn to the knotting probability. Let the symbol PK(N) denote the knotting
probability of the SAP with N steps on the cubic lattice for knot K . If there are M(K) SAPs
in the total M SAPs, then we evaluate it by PK(N) = M(K)/M . In our simulation, 105 SAPs
(M = 105) are constructed for six different values of the step number from N = 500 to 3000.
We have found that almost all SAPs are topologically equivalent to the trivial knot, and also
that the resulting values of the knotting probability for the trivial knot are fitted well by the
formula (1.1). Thus, for the trivial knot, we have obtained an estimate of the characteristic
length

N(∅) = (2.5 ± 0.3) × 105. (1.2)

This result means that trivial knots are dominant among SAPs on the cubic lattice when the
step number N is less than 105. It implies that when N > N(∅), the majority of SAPs on the
cubic lattice have some non-trivial knots. The large value of the characteristic length might be
a consequence of the strong self-avoiding effect of the SAP on the cubic lattice.

This paper is organized as follows. In section 2 we will estimate the universal amplitude
ratio and the critical exponent νSAP of the gyration radius. In section 3 we will explicitly discuss
the knotting probability for the trivial knot, and obtain the estimate of the characteristic length.
We will also show that the knotting probability for the trivial knot decays almost linearly since
the characteristic length of the trivial knot is so large. Finally, in the last section, we will
discuss the possibility that the characteristic lengths take an unique value without depending
on knot types.

2. The mean-square of the gyration radius

2.1. Previous results on SAW and SAP

An N -step SAW w in Z
3 is a sequence w0, w1, . . . , wN of N + 1 distinct points in Z

3 such that
each point wi is one of the nearest neighbours of its predecessor wi−1: |wi − wi−1| = 1 for
i = 1, . . . , N . It is also subject to a constraint that any site can never be occupied by two or
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more points in a sequence {wi}. The pointsw0 andwN are the endpoints ofw. The components
of wi are represented by w

(α)
i for α = 1, 2, 3. The SAP is a special case of the SAW that makes

a ring. We consider an (N − 1)-step SAW and denote it by w = {w0, w1, . . . , wN−1}. If the
endpoint w0 is the nearest neighbour of the endpoint wN−1, this is an N -step SAP in Z

3.
The mean-square of the gyration radius of the SAP 〈R2

G〉SAP is smaller than that of the
SAW 〈R2

G〉SAW. This fact comes from the following difference. The endpoints of the SAW
are free, while those of the SAP are constrained, that is, the endpoints of the SAP should meet
at the nearest neighbour sites of the lattice. This means that the SAW has a possibility of a
longest end-to-end distance whereas the SAPs does not.

The RG argument gives several results for the SAW and the SAP. Among these, we are
most interested in the amplitude ratio 〈R2

G〉SAP/〈R2
G〉SAW. According to the RG theory, the

amplitude ratio should be universal, i.e. it does not depend on the details of the models for
the SAW or the SAP. The ratio has been evaluated by using the RG equation and the cluster
expansion up to O(ε) [22, 23]:

〈R2
G〉SAP

〈R2
G〉SAW

= 0.568. (2.1)

The ratio has also been estimated in [19] through numerical simulations with N � 800: it is
given by 0.538 ± 0.006.

Another interesting result of the RG argument is that the critical exponent for the mean-
square of the gyration radius is universal. It is well known that the exponent νSAW of the
SAW corresponds to the critical exponent of the O(n) vector model in the limit of n going to
zero. The precise estimate of the critical exponent νSAW has been made using the ε-expansion
method through this correspondence [24–27]:

νSAW = 0.5882 ± 0.0011. (2.2)

The exponent νSAW has also been precisely evaluated by Monte Carlo simulations, where the
best estimate is given by the following [20]:

νSAW = 0.5877 ± 0.0006. (2.3)

2.2. The amplitude ratio

In our simulation of SAPs on the cubic lattice, we have employed a length-conserving
dynamical algorithm which keeps endpoints fixed. This algorithm was investigated in detail
by Madras et al [20, 21]. We call this algorithm the MOS pivot for short. Some details are
described in appendix A.

We calculate the ratio 〈R2
G〉SAP/〈R2

G〉SAW and the exponent νSAP using the MOS pivot and
compare resulting values with theoretical and other simulated values. The mean square of the
gyration radius is calculated using

〈R2
G〉SAP = 1

T

T∑
t=1

[
1

N

N∑
i=0

(
w

[t]
i − 1

N

N∑
j=0

w
[t]
j

)2]
(2.4)

where T is the number of polygons and N the step number, and the symbol w[t]
i denotes the ith

site in the t th SAP in the sequence of SAPs given by ‘200 successful MOS pivot operations’
(see appendix A for details).

Let us note that the gyration radius should have the asymptotic behaviour

〈R2
G〉SAP = ASAPN

2νSAP(1 + BN−�) as N → ∞. (2.5)
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Figure 1. Mean-square radius of gyration 〈RG〉. We give the log–log plot of the mean square of
the gyration radius versus the step number N . Here error bars denote one standard deviation.

Choosing 1
2 for the exponent � of the correction term, the numerical data given by the

equation (2.4) are plotted in figure 1 and fitted to ASAPN
2νSAP(1 + BN− 1

2 ), where ASAP, B
and νSAP are fitting parameters. Since there are not enough data to fit in a four-parameter
curve in our simulation, we have assumed the fixed value for the exponent �. We plot the
mean-square of the gyration radius from N = 500 to 30 000 in figure 1. Here, we set T , the
number of polygons, to 10 000. The error bars denote one standard deviation given by the
Poisson distribution to the number T of polygons with N .

The three parameters are obtained by fitting the data in figure 1:

νSAP = 0.5867 ± 0.0017 (2.6)

ASAP = 0.1101 ± 0.0037 (2.7)

B = −0.06 ± 0.04. (2.8)

The errors are subjective 68.3% confidence intervals. For the SAW, we recall that Madras
et al [20] estimated the exponent νSAW using the pivot algorithm up to N = 80 000. The
estimate of νSAW is given by (2.3) together with the following estimates of the fitting parameters:

ASAW = 0.194 55 ± 0.000 07 (2.9)

B ′ = −0.114 32 ± 0.004 65 (2.10)

� = 0.56 ± 0.03. (2.11)

Here, B ′ corresponds to AB in our estimated values. The estimate (2.6) is in good agreement
with that of the RG argument (2.2) and that of the simulation for the SAW (2.3).

From (2.7) and (2.9), we obtain the amplitude ratio

〈R2
G〉SAP

〈R2
G〉SAW

= 0.566 ± 0.019 (2.12)

where an error is a subjective 68.3% confidence interval. The amplitude ratio (2.12) is
consistent with the estimated value of the RG argument (2.1). The estimate of [19] is a
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little smaller than (2.12). However, it should be consistent with the estimate of [19], if we
consider the fact that the step numbers N of the simulations in [19] are much less than 30 000.

3. The characteristic length N (∅)

3.1. A method of evaluating the knotting probability

We evaluate the knotting probability in the following way. We generate M SAPs of N steps
and then enumerate the number M(K) of those polygons which are equivalent to a given knot
type K . We define the knotting probability PK(N) by the ratio M(K)/M .

In our simulation, we determine knot types of SAPs using the second-order Vassiliev-type
invariant and the Alexander polynomial evaluated at t = −1. The Vassiliev-type invariants
have the following advantages: (1) we can calculate them in polynomial time, and (2) we can
calculate them without consuming a large memory area [28]. The Vassiliev-type invariants are
not complete invariants. However, in the practical sense we can safely say that if the value of
the Vassiliev-type invariant computed for a SAP is zero, this SAP is a trivial knot. We will see
in section 3.3 that complicated knots are very rare events in our data. Even if non-trivial knots
are misidentified as the trivial knot by the Vassiliev-type invariant (this chance is very small),
it would not affect the results of this paper.

For calculating the knotting probability, we generate random sequences of SAPs. We
make five seeds for each of the six step numbers N = 500, 1000, 1500, 2000, 2500 and 3000,
and then apply an operator P on them a large number of times (20 000 times). Here, P denotes
200 successful MOS pivots (see appendix A). Then, we effectively get random sequences
of SAPs. A sequence of SAPs derived from each seed has a set of 20 000 SAPs. Here the
sequence consists of 20 000 × 200 successful MOS pivot operations. For each step number
N , we thus get samples of 100 000 SAPs.

In order to analyse the behaviour of the knotting probability, we use the fitting
formula (1.1). Here, we write it again:

PK(N) = C(K)Nm(K) exp

[
− N

N(K)

]

where C(N), N(K) and m(K) are fitting parameters. In particular, N(K) is called the
characteristic length with knot-type K . This formula was introduced by Deguchi and
Tsurusaki [12, 14, 15]. They pointed out that the formula (1.1) is suitable for the knotting
probabilities of the Gaussian and rod–bead models. We will show that this is also suitable for
the knotting probability PK(N) of the cubic lattice model.

3.2. The random events of knotted polygons

Let us discuss the statistics of knotted polygons generated in our simulation. We will see
in section 3.3 that almost all polygons are of trivial knots. Therefore, we may assume that
non-trivial knots are generated such as the Poisson random events: the number of trivial knots
between two knotted SAPs will follow the Poisson distribution, if the SAPs are randomly
constructed.

Let us consider the ‘time interval’ of the Poisson random events. We recall that the time
t is a discrete number. We measure the length L of the time interval of SAPs from time t1 at
which a knotted SAP appears, to time t2 at which the next knotted SAP appears after t1, and set
L = t2 − t1. If non-trivial knots are generated as the Poisson random events, the time interval
L follows the function

D(N,L) = A(N)P∅(N)L−1. (3.1)
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Table 1. The number of generated knots. The estimated errors correspond to one standard deviation.

Step numbers M(∅) M(31) M(41) etc M

500 99 849 ± 25 147 ± 24 3 ± 3 1 ± 1 100 000
1000 99 640 ± 38 344 ± 37 9 ± 6 7 ± 5 100 000
1500 99 430 ± 48 541 ± 46 24 ± 10 5 ± 4 100 000
2000 99 208 ± 56 752 ± 55 27 ± 10 13 ± 7 100 000
2500 98 965 ± 64 985 ± 62 38 ± 12 12 ± 7 100 000
3000 98 787 ± 69 1157 ± 68 40 ± 13 16 ± 8 100 000

We call it the discrete distribution function of the time interval L. Here, P∅(N) is the knotting
probability for the trivial knot. We have introduced A(N) for a technical reason and hence
D(N,L) is not necessarily normalized.

The discrete distribution functions of the time interval L are numerically evaluated as
follows. The time interval L is a discrete random variable. We introduce a sequence of natural
numbers {l0, l1, . . .}, where li = 50× i. Then, we count the number of polygons with L taking
values in [li , li+1) and plot it at li for each i. This is the discrete distribution function of the
time interval L obtained from numerical evaluation.

We plot the discrete distribution functions obtained by the numerical evaluation and
D(N,L) as a function of L, where P∅(N) is estimated from table 1 and A(N) is chosen
to fit these distributions (see figures 2(a) and (b)). Error bars denote one standard deviation.
They are estimated by applying the Poisson distribution to the number of samples included
in interval L. For N = 1000, 1500, 2000, 2500 and 3000, these graphs show a fairly good
agreement with the function D(N,L). In the case of N = 500, the data deviate from the
function. This is not unexpected since we have too few samples of knotted polygons. We do
not plot the graph for N = 500 in this paper.

We expect from figures 2(a) and (b) that the MOS pivot makes a uniform ensemble for
knots. Thus, we can calculate the knotting probability and the characteristic length using the
MOS pivot.

3.3. The number of unknotted polygons

Table 1 gives the number of each knot type with respect to N . Here, errors correspond to
68.3% confidence intervals. They are estimated by applying the binomial distribution to the
number M(K) of polygons for knot K . In table 1 we explain the notations: ∅, 31, 41 denote
the trivial knot, the trefoil knot and the figure-eight knot, respectively. The other knot types
are denoted by etc.

Table 1 shows clearly that almost all the generated SAPs are trivial knots. M(31) is also
much larger than M(41). The other knots (etc) are nearly equal to zero.

Next we focus on the knotting probability for the trivial knot, and plot P∅(N) as a function
of N (figure 3). The error bars are one standard deviation. P∅(N) decays linearly with respect
to N . It is expected that P∅(N) decays exponentially when N goes to infinity. In [1–3] it was
shown that the knotting probability P∅(N) tends to zero ‘exponentially’:

P∅(N) = A exp[−κN + o(N)] when N → ∞. (3.2)

Thus, this is a natural situation.
The asymptotic shape (3.2) is realized for the trivial knot in our case when the fitting

parameters of the formula (1.1) take the following values: |m(∅)| � 1 and C(∅) � 1. In fact,
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Figure 2. (a) Discrete distribution function of interval L of non-trivial knots for N = 1000. The
number of knotted SAPs occurring with respect to the time interval L is represented by the Poisson
distribution D(N,L) = A(N)P∅(N)L. P∅(N) is the knotting probability of the trivial knot with
the step number N and A(N) is a normalization factor. We call it the discrete distribution function
of the time interval L. In our simulation, we count the number of polygons with L taking values in
[li , li+1) and plot it at li for each subscript i. Here, the sequence {l0, l1, . . .} is defined by li = 50×i.
The data are fitted to the distribution D(N,L). We measure the length of the time interval of SAPs
from time t1 at which a knotted SAP appears to time t2 at which the next knotted SAP appears after
t1, and denote it by L (= t2 − t1). (b) Discrete distribution function of interval L of non-trivial
knots for N = 1500, 2000, 2500 and 3000. We plot the distributions D(N,L) and the data of
L taking values in [li , li+1) for the step number from N = 1500 to 3000, respectively. The data
are fitted to D(N,L) well. Therefore, the MOS pivot generates SAPs without biasing statistics of
knots.
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Figure 3. Knotting probability P∅(N). We give the graph of the knotting probability P∅(N) for
the trivial knot versus the step number N . Here error bars denote one standard deviation. The data
behaves as a linear decay with respect to N .

using the least-squares estimation, we find

C(∅) = 1.0035 ± 0.0035 (3.3)

m(∅) = (−4.7 ± 5.7) × 10−4 (3.4)

N(∅) = (2.5 ± 0.3) × 105 (3.5)

χ2 = 0.748 (3.6)

Prob (χ2 > 0.748) = 0.862 (3.7)

(errors are one standard deviation). Here, the χ2 value (i.e. the sum of square of normalized
deviations from the regression line) can serve as a criterion of good fit. It should be distributed
as χ2 with n − 3 degrees of freedom, where n is the number of data points in the fit.
Prob (χ2 > 0.748) is the probability that χ2 would exceed the observed value, in this case
86.2%. This implies that the formula (1.1) is suitable. It is remarkable that the characteristic
length of the trivial knot is much larger than the value expected from the rod–bead model.

There have been a few simulation studies on several lattices. In [11] the knotting
probability for the trivial knot was calculated on a FCC lattice. It was shown that, assuming
the two-parameter fitting formula, P∅(N) = C(∅)e−α(∅)N , the parameters were given by

α(∅) = (7.6 ± 0.9) × 10−6

C(∅) = 1.0011 ± 0.003

χ2 = 2.7

Prob (χ2 > 2.7) = 0.44

where errors were one standard deviation. Our interpretation of α(∅) taking 7.6 × 10−6 is that
the characteristic length is 1.3 × 105. Comparing the cubic lattice with the FCC lattice, the
characteristic length is larger on the cubic lattice than on the FCC lattice. In [3] it was also
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Figure 4. Knotting probability P31 (N). We give the graph of the knotting probability P31 (N) of
trefoils versus the step number N . Here error bars denote one standard deviation. If we assume
a finite-size effect for the SAPs of trefoils, we fit the data to the straight line which intersects the
x-axis at a positive value.

shown that the exponent α(∅) in the above form was (5.7 ± 0.5) × 10−6 on the cubic lattice.
This corresponds to the characteristic length of 1.8×105. We can expect that this is consistent
with our estimated value within the error bars. Here we note that the connection of [16] shall
be discussed in section 4 and also note that the simulation results of [29, 30] seem to contain
some information on the characteristic length of the SAP on the cubic lattice. However, we
are unable to derive any appropriate estimate from them.

Let us return to our data. We estimate not only the characteristic length N(∅) � 2.5×105

but also the exponent of a correction term m(∅) � 0. These parameters show that the knotting
probability for the trivial knot serves a ‘pure exponential’ decay on the cubic lattice. This is a
new result for the cubic lattice model. Thus, the simulation in this paper improves that of [3].

We have several interpretations of the characteristic length N(∅). Since N(∅) is so large,
we found that the number of knotted polygons are much smaller than that of unknotted polygons
in our simulation. We expect that the knotting probability for the trivial knot decreases to about
30% at N = N(∅). Thus, non-trivial knots become the majority of the SAPs when N is larger
than N(∅). In addition to this, we will see in section 4 that N(∅) � N(K) for any knot type
K is due to the fact that N(∅) is large.

In figure 4, we plot the knotting probability for the trefoil knot P31(N) as a function of N ,
where error bars are one standard deviation. The data points almost lie on a straight line. Since
the data of the trefoil knot are only six points in the step number, we cannot fit the knotting
probability P31(N) to formula (1.1). We leave the selection of fitting parameters for the trefoil
knot or more complicated knots to future investigations.

The knotting probability P31(N) may have a finite-size effect. When we set m(31) = 1
as expected from [14,16], the formula (1.1) does not match with P31(N) in our data. Deguchi
and Tsurusaki argued that a finite-size effect appeared in the knotting probabilities in [14].
When we plot the straight line fitted to P31(N), the line intersects with the x-axis at a positive
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value. This is the finite-size effect. We introduce the offset parameter Nini and replace N by
Ñ = N − Nini in the formula (1.1). When we fix m(31) = 1, our rough estimation gives
Nini ∼ 140 for the trefoil knot. On the other hand, we roughly estimate Nini ∼ 0 for the trivial
knot. We expect that such finite-size effect would also appear in the knotting probabilities for
the SAPs with more complicated knot types. It could be confirmed by generating SAPs with
much larger N .

In section 2.2 we calculated the gyration radius including all possible knots, and then
estimated the universal amplitude ratio and the universal exponent ν. Without classifying
knot types, however, we can effectively consider only trivial knots when N < N(∅). The
universal amplitude ratio and the universal exponent are evaluated effectively for the trivial
knots, although 2% of the SAPs are non-trivial knots and we neglect their influence.

4. A consequence of the large characteristic length N (∅)

The trivial knot dominates among SAPs on the cubic lattice when N is less than 2.5 × 105.
Our interpretation is that the cubic lattice so strongly possess the excluded-volume effect that
it almost prevents the appearance of knotted polygons.

We have a conjecture that the appearance of a complicated knot is a rare event on the cubic
lattice. According to [12, 14, 15], non-trivial knots occupy a large number of configurations
of SAPs for N � N(∅). We believe that the above situation is also realized on the cubic
lattice. If the formula (1.1) is a suitable form of the knotting probability and if the trefoil and
figure-eight knots on the cubic lattice behave like those of the continuum models, the ratio
M(41)/M(31) for each step number N should depend only on the ratio C(41)/C(31). We
recall that M(31) � M(41) for N < 3000 from table 1. Then, at N ∼ 2.5 × 105 almost all
SAPs are expected to be 31 knotted polygons on the cubic lattice unlike SAPs on the continuum
models.

We see that our estimated valueN(∅) is related to the growth constantµ from the viewpoint
of Orlandini et al [16]. The asymptotic behaviour of the number of N -step polygons cN is
given by

cN = aNα−3µN(1 + bN−� + o(N−1)) (4.1)

where α and � are critical exponents. For fixed knot type K , it is believed that the number
cN(K) of polygons with knot K should have a similar form:

cN(K) = a(K)Nα(K)−3µ(K)N(1 + b(K)N−�(K) + o(N−1)). (4.2)

Then, the knotting probability PK(N) is given by cN(K)/cN , and this implies that the
characteristic length N(∅) relates to the growth constants µ and µ(∅). We can estimate
the ratio µ/µ(∅) from the value of N(∅):

µ

µ(∅) � e1/N(∅) ∼ 1 + (4 ± 2) × 10−6 (4.3)

where an error is two standard deviations.
Let us discuss the independence of the characteristic length N(K) with respect to knot

type K . Orlandini et al [16] calculated the growth constants directly and showed the following
equality:

µ(∅) = µ(K) = 4.6836 ± 0.0038 for any knot type K (4.4)

where an error corresponds to a 95% confidence interval. In addition Guttmann estimated the
growth constant [31]

µ = 4.683 93 ± 0.000 02 (4.5)
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using exact enumeration and series analysis (an error is one standard deviation). From (4.4)
and (4.5), we obtain the ratio

µ

µ(∅) = µ

µ(K)
� 1 + (7 ± 8) × 10−5 (4.6)

where an error is two standard deviations. From (4.3) and (4.6), we expect that the characteristic
length is independent of the knot type: N(∅) � N(K) ∼ 2.5 × 105 for any knot type K .

Although the independence ofµ(K)with respect to knot typeK is pointed out by Orlandini
et al [16], we can also confirm it more precisely through our simulation. While Orlandini
et al [16] calculated the growth constants, we have no direct calculation for them. However, we
can predict that the difference betweenµ(∅) andµ(K) is very small when we use the following
inequalities: lim infN→∞ N−1 log cN(K) � µ(∅) and lim supN→∞ N−1 log cN(K) < µ for
any knot type K , which were proven in [3, 4]. If both lim infN→∞ N−1 log cN(K) and
lim supN→∞ N−1 log cN(K) exist and take the same value µ(K), then we have µ(∅) �
µ(K) < µ. These inequalities and the estimate (4.3) limit the ratio µ(K)/µ(∅) to∣∣∣∣µ(K)

µ(∅) − 1

∣∣∣∣ � (4 ± 2) × 10−6. (4.7)

This is a strong bound. Thus, we can expect that µ(∅) � µ(K) for any knot type K .
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Appendix A. The method for generating SAPs

Let us discuss the method for making SAPs employed in this paper. We first construct a seed
SAP w, and then derive a random sequence of SAPs {w[1], w[2], . . . , w[t−1], w[t], . . .}, where
w[t] = P(w[t−1]) and w[0] = w(0). Here the operator P will be defined later.

We construct a ‘seed’ SAP, by combining two SAWs which have the same endpoints,
in the following way: first we make an N/2-step SAW using the myopic self-avoiding walk
(MSAW) algorithm [32], where N is an even integer; secondly we perform the MOS pivot
transformations with respect to k = 0, l = N/2 [21]; finally we concatenate the endpoints of
the new and original SAWs respectively (figure A.1), and get an SAP with the step number N
if it has no self-intersections.

Let us discuss how to construct a random sequence of SAPs in our simulations. If one
of the MOS pivot transformations changes a given SAP into a different SAP, this operation is
called a successful MOS pivot operation. We consider a sequence of successful MOS pivot
operations. Then, we define an operator P by 200 successful MOS pivot operations in the
sequence. We note that the SAP obtained by a single successful MOS pivot is not independent
from the original one: they are correlated. However, the correlation decays almost completely
after 200 successful MOS pivot operations, which shall be shown in appendix B. Thus, we
may consider that for any given SAP w, P(w) is independent from w.

For generating SAPs, we use the Mersenne twister which is a pseudo-random number
generator [33]. This algorithm has the following properties: (1) we can get many samples
because the period is 219 937 − 1, (2) we treat high-dimensional space (max 623 dimensions),
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Figure A.1. Generated seed SAP with step number N . An original SAW w generated by the
MSAW algorithm with the step number N/2 transforms into another SAW using the MOS pivot
with respect to k = 0 and l = N/2. We concatenate the edges of new and original SAWs,
respectively. We get an N -step SAP.

(3) pseudo-random numbers are generated quickly and (4) we can use the memory efficiently.
Thus, the Mersenne twister is a high-performance generator.

Appendix B. The decay of correlations between the SAPs obtained by the MOS pivot
operations

In order to check the validity of the random sequence of SAPs constructed in this paper, we
show explicitly how the correlation between the SAPs decays after applying a number of MOS
pivot operations.

Let us regard the number τ of successful MOS pivot operations as the time of evolution
of the SAP shape under the sequential MOS pivot operations: the seed SAP w of a random
sequence corresponds to w(0) for τ = 0; w(τ) is defined by pτ (w) for τ > 0. Here p denotes
a successful MOS pivot operation. Let us now define the correlation function for the SAP
structure with the step number N in the following

C(τ) =
∑3

α=1

∑N−1
i=0 〈(w(α)

i (0) − 1
N

∑N−1
j=0 w

(α)
j (0))(w(α)

i (τ ) − 1
N

∑N−1
l=0 w

(α)
l (τ ))〉∑3

α=1

∑N−1
i=0 〈(w(α)

i (0) − 1
N

∑N−1
j=0 w

(α)
j (0))2〉

(B.1)

where w(α)
i (τ ) is the α-component of the ith site of the SAP (or SAW) after τ pivot operations

and 〈·〉 denotes the statistical average.
In figures B.2(a) and (b), we plot the correlation C(τ) versus time τ in the cases of

N = 500 and 1000, respectively. Error bars show one standard deviation which are estimated
by assuming that the data follows the Poisson distribution. In our simulation, we evaluated the
correlations of SAPs with the step number N at 500 and 1000, and generated 10 000 sequences
(starting from 10 000 different seeds) to take the statistical average.

The decay rate of the correlation function C(τ) is slower in the case of the MOS pivot than
in the case of the normal pivot algorithm (figures B.2(a) and (b)). This is due to the difference
in the numbers of independent pivot transformations. Note that the number of independent
transformations for the normal pivot algorithm [20,32] is d!2d−1 (the normal pivot algorithm
is an algorithm with one endpoint free while the other fixed), which correspond to the number
of all the elements of the d-dimensional orthogonal group on a hypercubic lattice, while for
the MOS pivot 2d(d − 1) + 1 in the d-dimensional hypercubic lattice. In the cubic lattice, the
MOS pivot has 13 pivot transformations while the normal pivot algorithm has 47.
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Figure B.2. (a) Pivot correlationC(τ) atN = 500. We plot the pivot correlationsC(τ) versus time
τ . The MOS pivot and the normal pivot operations in the case of N = 500, respectively. Here, τ
is the number of trials, and error bars correspond to one standard deviation. The correlation of the
MOS pivot decays slower than that of the normal pivot. (b) Pivot correlation C(τ) at N = 1000.
Similarly to (a) we plot the pivot correlations C(τ) versus time τ . The MOS pivot and the normal
pivot operations in the case of N = 1000, respectively. Here, τ is the number of trials, and error
bars correspond to one standard deviation. At τ = 200, we consider correlations C(τ) as zero
focusing on the MOS pivot correlations for N = 500 and 1000.



On the dominance of trivial knots among SAPs on a cubic lattice 7577

References

[1] Sumners D W and Whittington S G 1988 J. Phys. A: Math. Gen. 21 1689
[2] Pippenger N 1989 Discrete Appl. Lett. Math. 25 273
[3] Whittington S G 1992 AMS Proc. Symp. Appl. Math. 45 73
[4] Soteros C E, Sumners D W and Whittington S G 1992 Math. Proc. Camb. Phil. Soc. 111 75
[5] Vologodskii A V, Lukashin A V, Frank-Kamenetskii M D and Anshelevich V V 1974 Sov. Phys.–JETP 39 1059
[6] Michels J P J and Wiegel F W 1982 Phys. Lett. A 90 381
[7] Le Bret M 1980 Biopolymers 19 619
[8] Chen Y D 1981 J. Chem. Phys. 74 2034

Chen Y D 1981 J. Chem. Phys. 75 2447
Chen Y D 1981 J. Chem. Phys. 75 5160

[9] Klenin K V, Vologodskii A V, Anshelevich V V, Dykhne A M and Frank-Kamenetskii M D 1988 J. Biomol.
Struct. Dyn. 5 1173

[10] Koniaris K and Muthukumar M 1991 Phys. Rev. Lett. 66 2211
[11] Janse van Rensburg E J and Whittington S G 1990 J. Phys. A: Math. Gen. 23 3573
[12] Deguchi T and Tsurusaki K 1994 J. Knot Theory and Its Ramifications 3 321
[13] Deguchi T and Tsurusaki K 1997 Geometry and Physics (Lecture Notes in Pure and Applied Mathematics Series

vol 184) ed J E Andersen, J Dupont, H Pedersen and A Swann (Basel: Marcel Dekker) pp 557–65
Deguchi T and Tsurusaki K 1995 Proc. Geometry and Physics (Institute of Mathematics, University of Aarhus,

Aarhus, Denmark, July 1995)
[14] Deguchi T and Tsurusaki K 1997 Phys. Rev. E 55 6245
[15] Deguchi T and Tsurusaki K 1997 Lectures at Knots96 (Singapore: World Scientific) p 95
[16] Orlandini E, Tesi M C, Janse van Rensburg E J and Whittington S G 1998 J. Phys. A: Math. Gen. 31 5953
[17] Delbrück M 1962 Proc. Symp. Appl. Math. 4 55
[18] des Cloizeaux J and Mehta M L 1979 J. Physique (Paris) 40 665
[19] Tesi M C, Janse van Rensburg E J, Orlandini E and Whittington S G 1996 J. Phys. A: Math. Gen. 29 2451
[20] Li B, Madras N and Sokal A D 1995 J. Stat. Phys. 80 661
[21] Madras N, Orlitsky A and Shepp L A 1990 J. Stat. Phys. 58 159
[22] Prentis J J 1982 J. Chem. Phys. 76 1574
[23] Lipkin M, Oono Y and Freed K F 1981 Macromolecules 14 1270
[24] LeGuillou J C and Zinn-Justin J 1980 Phys. Rev. B 21 3976
[25] LeGuillou J C and Zinn-Justin J 1985 J. Phys. Lett. 46 L-137
[26] LeGuillou J C and Zinn-Justin J 1989 J. Physique (Paris) 50 1365
[27] Guida R and Zinn-Justin J 1997 Preprint SPhT-t97/040
[28] Deguchi T and Tsurusaki K 1993 Phys. Lett. A 174 29
[29] Janse van Rensburg E J and Whittington S G 1991 J. Phys. A: Math. Gen. 24 3953
[30] Orlandini E, Tesi M C, Janse van Rensburg E J and Whittington S G 1996 J. Phys. A: Math. Gen. 29 L299
[31] Guttmann A J 1989 J. Phys. A: Math. Gen. 22 2807
[32] Madras N and Slade G 1993 The Self-Avoiding Walk (Basle: Birkhäuser)
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